DIY Boost Converter using MC34063 IC

DIY Boost Converter Using the MC34063 IC – A Step-by-Step Guide

Looking to design your own boost converter? You’re in the right place! In this guide, we’ll explore how to create a 5V to 12V boost converter using the versatile MC34063 IC, which is perfect for DC-to-DC conversions. Whether you’re a beginner or an enthusiast, this project is simple yet efficient. Let’s dive in!


Introduction to the MC34063 IC

The MC34063 is a widely-used DC-to-DC converter IC, capable of working as both a step-down (buck) and step-up (boost) converter. It comes in an 8-pin DIP package and offers several features that make it ideal for voltage conversion projects. With a switching frequency of up to 100 kHz, it supports various applications like voltage regulation, battery chargers, and power supplies.

Key Features of the MC34063 IC

  • Built-in oscillator and comparator for efficient operation.
  • Adjustable output voltage with minimal external components.
  • Handles input voltage from 3V to 40V.
  • Supports a peak current output of up to 1.5A.
  • Built-in short-circuit protection and low standby current.
  • Suitable for applications like telecommunications, medical devices, and more.

Pin Configuration of MC34063 IC

Pin NumberPin NameDescription
1Switch CollectorOutput voltage pin (transistor collector).
2Switch EmitterEmitter pin of the internal transistor.
3Timing CapacitorControls the switching frequency.
4GroundConnects to the negative terminal of supply.
5Comparator Inverting InputSets output voltage.
6VCCInput voltage pin.
7Ipeak SenseSets the peak output current.
8Driver CollectorCollector pin for the switching transistor.

Why Choose the MC34063 for DC-to-DC Conversion?

The MC34063 can be used in buck, boost, and inverting topologies with minimal external components. In this project, we’ll focus on building a boost converter that steps up 5V input to 12V output. The circuit is cost-effective and provides high efficiency, making it ideal for DIY electronics projects.


Step-by-Step Guide to Building the Boost Converter

Step 1: Select the Schottky Diode

Use the 1N5819 Schottky diode, which has a low forward voltage drop of 0.49V at 1A current. This ensures better efficiency in high-frequency applications.

Step 2: Calculate Ton/Toff

Using the formula:

Ton/Toff=Vout+Vf−Vin (min)Vin (min)−Vsat\text{Ton/Toff} = \frac{V_{\text{out}} + V_f – V_{\text{in (min)}}}{V_{\text{in (min)}} – V_{\text{sat}}}Ton/Toff=Vin (min)​−Vsat​Vout​+Vf​−Vin (min)​​

For:

  • Vout=12VV_{\text{out}} = 12VVout​=12V
  • Vf=0.49VV_f = 0.49VVf​=0.49V
  • Vin (min)=4.5VV_{\text{in (min)}} = 4.5VVin (min)​=4.5V
  • Vsat=0.45VV_{\text{sat}} = 0.45VVsat​=0.45V

Ton/Toff=12+0.49−4.54.5−0.45=1.97\text{Ton/Toff} = \frac{12 + 0.49 – 4.5}{4.5 – 0.45} = 1.97Ton/Toff=4.5−0.4512+0.49−4.5​=1.97


Step 3: Calculate Ton + Toff

The switching frequency is set at 50kHz (from the datasheet).

Ton + Toff=1f=150,000=20 μs\text{Ton + Toff} = \frac{1}{f} = \frac{1}{50,000} = 20 \, \mu sTon + Toff=f1​=50,0001​=20μs


Step 4: Calculate Toff

Using:

Toff=Ton + Toff(Ton/Toff)+1\text{Toff} = \frac{\text{Ton + Toff}}{(\text{Ton/Toff}) + 1}Toff=(Ton/Toff)+1Ton + Toff​ Toff=20 μs1.97+1=6.73 μs\text{Toff} = \frac{20 \, \mu s}{1.97 + 1} = 6.73 \, \mu sToff=1.97+120μs​=6.73μs


Step 5: Calculate Ton

Ton=(Ton + Toff)−Toff=20 μs−6.73 μs=13.27 μs\text{Ton} = (\text{Ton + Toff}) – \text{Toff} = 20 \, \mu s – 6.73 \, \mu s = 13.27 \, \mu sTon=(Ton + Toff)−Toff=20μs−6.73μs=13.27μs


Step 6: Choose the Timing Capacitor (Ct)

Using:

Ct=4.0×10−5×TonC_t = 4.0 \times 10^{-5} \times \text{Ton}Ct​=4.0×10−5×Ton Ct=4.0×10−5×13.27 μs=530.8 pFC_t = 4.0 \times 10^{-5} \times 13.27 \, \mu s = 530.8 \, pFCt​=4.0×10−5×13.27μs=530.8pF

A 560pF ceramic capacitor is a suitable choice.


Step 7: Calculate Peak Current (Ipk)

Ipk=2×Iout (max)×(Ton/Toff+1)I_{\text{pk}} = 2 \times I_{\text{out (max)}} \times (\text{Ton/Toff} + 1)Ipk​=2×Iout (max)​×(Ton/Toff+1)

For Iout (max)=200mAI_{\text{out (max)}} = 200mAIout (max)​=200mA:

Ipk=2×0.2×(1.97+1)=1.2AI_{\text{pk}} = 2 \times 0.2 \times (1.97 + 1) = 1.2AIpk​=2×0.2×(1.97+1)=1.2A


Step 8: Determine Sense Resistor (Rsc)

Rsc=0.3IpkR_{\text{sc}} = \frac{0.3}{I_{\text{pk}}}Rsc​=Ipk​0.3​ Rsc=0.31.2=0.25 ΩR_{\text{sc}} = \frac{0.3}{1.2} = 0.25 \, \OmegaRsc​=1.20.3​=0.25Ω


Step 9: Calculate Inductor Value (Lmin)

Lmin=(Vin (min)−Vsat)Ipk×TonL_{\text{min}} = \frac{(V_{\text{in (min)}} – V_{\text{sat}})}{I_{\text{pk}}} \times \text{Ton}Lmin​=Ipk​(Vin (min)​−Vsat​)​×Ton Lmin=4.5−0.451.2×13.27 μs=44.8 μHL_{\text{min}} = \frac{4.5 – 0.45}{1.2} \times 13.27 \, \mu s = 44.8 \, \mu HLmin​=1.24.5−0.45​×13.27μs=44.8μH

Choose a 45µH inductor.


Step 10: Calculate Output Capacitor (Cout)

For a ripple of 200mV peak-to-peak:

Cout=9×(Ripple×TonRipple Voltage)C_{\text{out}} = 9 \times \left(\frac{\text{Ripple} \times \text{Ton}}{\text{Ripple Voltage}}\right)Cout​=9×(Ripple VoltageRipple×Ton​) Cout=9×(0.2×13.27 μs0.2)=119.43 μFC_{\text{out}} = 9 \times \left(\frac{0.2 \times 13.27 \, \mu s}{0.2}\right) = 119.43 \, \mu FCout​=9×(0.20.2×13.27μs​)=119.43μF

Use a 120µF 20V capacitor for better ripple reduction.


Step 11: Feedback Resistor Selection

The output voltage formula is:

Vout=1.25×(1+R2R1)V_{\text{out}} = 1.25 \times \left(1 + \frac{R_2}{R_1}\right)Vout​=1.25×(1+R1​R2​​)

For Vout=12VV_{\text{out}} = 12VVout​=12V, choose R1=910 ΩR_1 = 910 \, \OmegaR1​=910Ω and R2=8.2 kΩR_2 = 8.2 \, k\OmegaR2​=8.2kΩ.


Conclusion

By following these steps and using the calculated values, you can design an efficient 5V to 12V boost converter. The MC34063 IC is a versatile and reliable choice for such projects. Get started with your DIY project today and explore the world of electronics with Regent Electronics!

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top